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Elements of chaos, as well as order, are observed in turbulent flows. Partial order 
in turbulent flows is manifested through the presence of coherent (organized) structures. 
The identification of organized motions in turbulent flow is made difficult because such 
motions evolve, and the phase as well as orientation are random. The main difficulty, how- 
ever, is that since the interaction of structures is sufficiently strong, concrete realiza- 
tions fluctuate significantly. 

Flow visualization techniques to study the structures are reliable when they are isolated. 
If the orientation and phase of the structures are fixed, then the quantitative information 
is obtained by conditional averaging of the hot-wire signal [i-3]. In the opposite case, 
single-point measurements do not give the desired information on organized structures. 

In recent years, simultaneous measurements at many points in the turbulent flow field 
have been carried out [4-6]. Methods are being developed to numerically simulate turbulence 
on the computer. It is clear that the complete information on the organized structures is 
present in the instantaneous hydrodynamic flow field. But the question arises as to how 
to retriewe this information. 

A complete understanding of the structures under conditions of large fluctuations demands 
a statistical approach. For statistical study it is necessary to develop a system of quanti- 
tative characteristics; these should describe structures of given scale in the neighborhood 
of each point in the flow. 

The present work describes a method to analyze results of laboratory and numerical experi- 
ments for the identification and quantitative analysis of successive three- and two-dimen- 
sional organized structures, and requires the computation of tensor moments of the flow field. 
The tensor field developed below contains information on the fundamental characteristics 
of the flow in the neighborhood of each point and the invariants of rotation do not depend 
on the orientation of the ordered motion and could be used to determine its qualitative char- 
acteristics. One could hope that the statistical properties of invariants would help in 
understanding what could be reproduced and what fluctuates in turbulent flows. 

Identification of Vortex Structures of a Given Scale. Coherent structures refer to 
coherent bundles of vorticity. In order to isolate an organized structure of a given scale 
%, it is necessary to have a proper description of the vortex field. Consider a spherical 
volume of radius % in a turbulent fluid. The boundary of this volume could be intersected 
by vortex lines which cannot be broken without violating the irrotationality condition. Di- 
vide the vorticity ~ into two solenoidal components ~' and ~(%). It is assumed that the 
~' field coincides with ~ outside the chosen volume and is equal to the gradient of the har- 
monic function V X inside the volume. The condition of irrotationality for ~' and ~(%) is 
satisfied everywhere if at the boundary of the region the normal derivative of the function 
X is equal to the normal projection of vorticity: 

(r'V~)r = (r.~)r. (1) 

Here r denotes coordinates of any point relative to the center of the volume; the index F 
refers to computation at the spherical boundary. The ~'-field does not contain information 
on ~ inside the volume; this is present in the additional component ~(%) = ~ - m'. The 
m(%)-field forms a vortex of size % since its vortex lines do not intersect the boundary 
of the volume. Thus, the description of the vortex structure inside the chosen volume leads 
to the problem of describing the structure of an isolated vortex. 
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Moments of Vortex Structure. The distribution of vorticity inside the structure can 
be very complex. Not all details of this distribution are of equal interest and importance, 
and hence it is desirable to express integral parameters which characterize basic proper- 
ties of the distribution in its entirety. 

The known integral characteristics of the vortex cloud are the vortex momentum and the 
angular moment of vortex momentum (Lamb's momentum) [7, 8]: 

P = - y  r >< o)(~)dV, J = - i  r X X dV 

(for an isolated vortex it is possible to put ~(X) ~ w). More subtle details of vortex dis- 
tribution are described by linear moments 

MgO . ,,t% ~ r%r% rln_lO)~n ) (x + r) dV (r), (2) 

where x are coordinates of the center of the sphere. As mentioned in [9], moments of the 
type (2) are convenient to describe internal degrees of freedom of isolated vortices. In 
the present case M (n) is the tensor field characterizing the flow structure in the neighbor- 
hood of each point x. An analogous method was used in [i0] to describe the local structure 
of condensed matter. 

It is not difficult to note that the moments M (n) are the coefficients of Taylor series 
of the Fourier transform: 

~m (k) = ~ exp (-- ikr) ~ ) ( r )  dV (r)~ 

Hence the ~(X) field is completely described by the set of moments (2). The most signifi- 
cant characteristics of the chosen vortex are given by moments of lower order. Consider 
in great detail M n (n ~ 4). It is convenient to divide these tensors into irreducible com- 
ponents [ii]. Irreducible tensor components M (n) (n 5 4) expressed in terms of vorticity 

are given by 

P=-~ rXodV; (3)  

J;=" + ~ (3rirj--r'fiiJ)wJ dV; (4) 

tij = y [ri (r X o)j + r~ (r • o)d dV; (5) 

4 ~ [5rirF m _ r~ (rj6i~ + r~6ij § ri6j~)] omdV; d~j = T (6)  

a = t ~ r 2 F x  r (7)  

t y [rlr j (r X m)m + rirm (r X m)i + rjrm (r X m)~] dV 2 (ai6j~ + aj6im + amfiij). (8) 

Here the integrals are taken about the chosen spherical volume. Transformations to integrals 
from the ~ field are carried out using Green's function for the Neumann problem [12]. Some 
details of computation are given in [13]. Vorticity of the type ~' = 7X and a simple trans- 
fer by large-scale motions do not contribute to tensors (3)-(8). 

The physical meaning of irreducible tensors becomes clear if they are expressed in terms 
of the density of vortex momentum q [14, 15]. The q field is determined such that it is 
equal to the density of momentum required for the instantaneous generation of vortex ~(X) in 
the background of vorticity ~'. The substitution of f = 6(t)q in the vorticity equation 

O~/at = rot [uX~]  + vA~ + r0 t i  
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and the integration along infinitely small time interval (-e, ~), e + 0, gives the relation 
~(~) = rot q. The calibration of the q field is chosen such that the isolated vortex repre- 
sented the :spatially bound distribution q(r). Other details of calibration are of no further 
significance. Due to the finiteness of the q field, its moments could be computed by inte- 
grating about the entire space. 

The substitution of m = ?X + rot q in (3)-(8) and the integration by parts result in 

P = ~qdV; (9 )  

$ = ~r  • qdV; ( i 0 )  

tij = S [3 (r~qj + r~q~) - -  2 (r.q) tt~] dV; (11) 

d~j = 4 f  [r i ( r  X q)~ + rj (r X q)i] dV; 

,f 
a --g- [2qr2_r(r .q )]dV;  

(i2) 

(13) 

c~jm =--i'~ [5(rtjqm + rtmq~ + rjr~qi)--2(r'q)(ri6J m + rjS~,, + rmSij)--r2(qiS~m + q~Si~ + q~5~)ldV. (14)  

E q u a t i o n s  ( 9 ) - ( 1 4 )  make i t  p o s s i b l e  t o  e x p r e s s  t h e  n a t u r e  o f  t h e  m o t i o n  t h r o u g h  moments o f  
t h e  d i s t r i b u t i o n  o f  e q u i v a l e n t  f o r c e  momentum, and Eqs.  (9)  and (10)  l e a d  t o  t h e  known con-  
c l u s i o n  [7 ,  8] t h a t  v e c t o r s  P, J a r e  e q u a l  t o  t h e  t o t a l  v o r t e x  momentum and t h e  moment o f  
v o r t e x  momentum. T e n s o r s  t i ~  and Ci jm d e s c r i b e  q u a d r u p l e  and o c t u p l e  d e f o r m a t i o n  o f  t h e  
l i q u i d  vo lume  by v o r t i c i t y  ~ f X ) .  The t e n s o r  d i j  g i v e s  d i s t o r t i o n  a l o n g  t h e  m a j o r  a x e s  o f  
t h i s  t e n s o r .  The v e c t o r  a d e s c r i b e s  r e c i r c u l a t i o n  i n s i d e  t h e  c h o s e n  vo lume a s s o c i a t e d  w i t h  
~(~). 

Smoothed S e c t i o n .  The c h o i c e  o f  t h e  mos t  c o n v e n i e n t  r e p r e s e n t a t i o n  o f  moments i s  d i c -  
t a t e d  by t h e  s p e c i f i c  n a t u r e  o f  t h e  p r o b l e m .  Moments ( 3 ) - ( 8 )  can  be e x p r e s s e d  in  t e r m s  o f  
v e l o c i t y  u s i n g  k i n e m a t i c  c o n d i t i o n s  ~ = r o t  u and i n t e g r a t i n g  by p a r t s .  T h i s  r e s u l t s  in  
s u r f a c e  i n t e g r a l s  o f  v e l o c i t y  on t h e  s p h e r e ,  which  c o u l d  be u n d e s i r a b l e .  For  e x a m p l e ,  l e t  
the velocity be measured at certain finite number of points. Statistically some of them 
may be on the spherical boundary, but may be insufficient for a reliable computation of the 
surface integral. It is possible to avoid these difficulties by excluding integration along 
the region with the given boundary r = ~. 

Introducing a weighting function w(~)(r) for the integrals (3)-(8) and extending the 
integration to the entire space, e.g., 

P = ~2-, r X (o (x + r) w( ~ (r) dV (r). 

It is assumed that the function w(X)(r) is close to unity when r < X and rapidly de- 
creases outside this region. The above integral corresponds to the stepwise discontinuous 
region w(E)(r) = 8(~ - r)~ where @ equals one for r < X and zero for r > ~. The case of 
an arbStrary function w(EJ(r) leads to the above case if a step function is used in the inte- 
gral w(~) 

dw(~) (~') 
w(~) (r) = - -  3 7 ~  0 (~' - r) d~'.  ( 1 5 )  

0 

E~uation (15) makes it possible to separate an isolate vortex corresponding to the smooth 
w(~). Direct computations show that its vorticity is solenoidal and equals 

(r) = - -  S d~' dw(~)a~,(J___! [ ~  (r) - -  Vx (r~ ~ ' )h  
T 

where  •  X ' )  i s  a h a r m o n i c  f u n c t i o n  s a t i s f y i n g  t h e  b o u n d a r y  c o n d i t i o n  (1 )  a t  r = ~ ' .  Vor -  
t e x  p a r a m e t e r s  a r e  d e t e r m i n e d  f rom t h e  i n t e g r a l s  ( 3 ) - ( 8 )  w i t h  t h e  r e p l a c e m e n t  dV + w(X)dV. 

737 



Surface integrals of velocity are transformed to volume integrals of the sDherical layer 
whose effective thickness is determined by the profile of the function dw(%)(r)/dr. 

Two-dimensional vortex structures are described by simpler tensor characteristics since 
vorticity can also be considered pseudoscalar. The above fluctuation ~' is supplemented 
by the vortex component that satisfies the condition rot m' = 0 inside the chosen region. 
In the case of two-dimensional flows, this condition has the form eijS~'/Srj = 0, i.e., 
m' = const. 

Consider a circle of radius X in the plane of the flow, and divide vorticity into two 
components: m = ~' + m(X). The ~' field coincides with ~ outside the chosen region and 
is constant inside it. It is convenient to make this constant equal to the mean velocity 
along the circle 

o' ( r )=--~Sc0dA (r < ;~). 

The field m(%) = m - ~' forms a vortex pair of scale %. Its moments are symmetrical relative 
to the rotation of all indices: 

(n) X Mil...~n-i ( ) S rii " "  rln-lc~ (x + r) dA (r). 

From M (n) it is possible to construct irreducible moments of vortex pairs. The simplest 
of them, viz., vortex impulse, moment of momentum, and tensor deformation: 

These moments are not affected in the transformation to a rotating system of coordinates 
or in other Galilean systems which are important for possible geophysical applications. 

Invariance of Tensors. The tensor field described in this work is nonzero only near 
the points where structures of scale % are present. This property is useful in the study 
of flows with noticeable displacement. Tensors (3)-(8) can be used to bring out organized 
structures and also for their quantitative analysis. An invariant symmetric tensor of rank 
n contains 2n + 1 independent components. Three parameters give the orientation of the struc- 
ture in space. The remaining 2(n - i) parameters give quantitative characteristics of the 
vortex structure independent of its orientation. These characteristics can be considered 
invariant ~(~) (D = i, 2, ...) of irreducible tensors. 

Assume that tensor fields M (n) and their invariants for n i n o are obtained from ex- 
periment or by numerical simulation. Questions arise as to which information on the nature 
of turbulent structures can thus be obtained and how to get it. 

Knowing the distribution of invariants inside the volume of the system, it is possible 
to isolate parts of the fluid occupied by corresponding structures. It is possible to iden- 
tify the type of structures across their fields ~(~)(x) by comparing these fields with a 
standard based on specially created vortex-disturbance types (vortex rings and vortex fila- 
ments, shear layers, etc.), and in doing so it becomes possible to set up a spectroscopy 
of structures according to their invariants. It is especially interesting to compare the 
evolution of the quantities ~(D) in time with the evolution of isolated structures. A com- 
parison of structures according to their moments M! n) ~ t n i n 0 is the comparison of classes 

possible to e~ v that invariants ~(~) for small to which these structures belong. It is c 
numbers (n ~ 4) describing the most large-scale deformation of the volume in flow are not 
too sensitive to fluctuations inside the structures. 

Identification of vortex structures in turbulent flow with standard configuration in- 
dicates that, for this structure, its characteristics are expressed as the projection of 
fluctuations on the characteristics of the standout structure. The choice of initial time 
and location and orientation in space still remain arbitrary in such a comparison. It is 
possible that stochastic nature of turbulence is primarily associated with these quantities 
and hence their study in terms of moments M(n) is an important problem. 
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